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Abstract

We present a novel framework for natural language to SQL translation that leverages
heuristic stores, ontological structures, and generative data feedback loops to optimize query
generation accuracy and user satisfaction. Our system employs a multi-tiered evaluation
architecture that encompasses security, factual consistency, personalization, and response
relevance. Through the implementation of a crawling mechanism that transforms genera-
tive data into actionable knowledge, we achieve significant improvements in table selection
accuracy, extraction precision, and SQL execution success rates. The proposed architecture
integrates a memory-augmented heuristic store with an adaptive context generation pipeline,
enabling real-time personalization and multi-turn conversation coherence. We provide for-
mal mathematical frameworks for table likelihood computation, query-context mapping, and
evaluation metrics that directly correlate with business value propositions.

1 Introduction

The translation of natural language queries into structured query language (SQL) for data
access remains a critical challenge in data democratization. The problem statement is
to maximize the accuracy in fetching the right data based on business leaders’
queries—specifically for L1 and L2 query types. Business leaders require direct access
to data with extreme accuracy guarantees, and current systems fail to deliver the required
precision.

1.1 The Accuracy Challenge in L1 and L2 Queries

L1 and L2 queries represent user-facing data requests that may involve significant complexity:
multiple business metrics, diverse filters, complex join logic across related tables, temporal
aggregations, and domain-specific calculations. The challenge is not the simplicity or complexity
of the query itself, but rather the requirement for extremely high accuracy (95-100%) in query
interpretation and execution.

When converting natural language queries to SQL for L1/L2 use cases, a Large Language
Model (LLM) must make several critical decisions:

e Correct Table and View Identification: Identifying which tables, views, and data
sources contain the requested business entities and metrics

e Accurate Metric Extraction: Selecting the exact business metrics, calculations, and
aggregations the user is requesting



e Filter and Constraint Application: Applying the correct conditions, date ranges, and
business logic constraints based on user intent

e Join Logic and Relationships: Correctly specifying join conditions across multiple
tables and handling complex business relationships

e Data Semantics and Format: Understanding how data is structured, calculated, and
what assumptions underlie the data

For L1/L2 queries, there is binary correctness: either the query returns the exact, correctly-
calculated data the user requested or it fails to meet requirements. There is no tolerance for
misinterpreted metrics, incorrect filters, or data inconsistency. This binary nature of query
correctness creates an exceptionally high bar for accuracy.

1.2 Our Solution Approach: Ontology-Driven Learning from Failures

We solve this problem through a multi-layered strategy combining ontological structure with
rigorous evaluation and continuous learning: (1) Comprehensive evaluation of all critical
steps—table selection, metric extraction, filter validation, and result consistency—to identify
failure points; (2) Zero true negative principle ensuring no valid patterns are lost during
heuristic extraction; (3) Generative data crawling that systematically extracts signals from
user interactions to update knowledge continuously; and (4) Personalization through per-user,
per-team, and per-query-type statistics that capture user-specific patterns and preferences.

1.3 Framework Overview

The framework integrates: (1) a foundational ontology providing semantic structure; (2) a
heuristic store accumulating successful patterns and user preferences; (3) multi-tiered evalua-
tion assessing security, accuracy, and relevance; (4) a crawling mechanism transforming inter-
actions into refined knowledge; and (5) an adaptive context generation pipeline tailored to each
user. This architecture treats ontology as a foundation continuously refined through production
feedback, enabling the high accuracy required for L1/L2 query execution.

2 Entity, Filter, and Metric Extraction with Ontology-Driven
Definition

The foundation of our query generation process rests on the accurate extraction and linking of
three critical components: entities, filters, and metrics. These components are extracted from
natural language queries using a combination of ontological structure, pattern recognition, and
user-guided definition when unknown entities are encountered.

2.1 Extraction Pipeline

The extraction pipeline operates as follows:

1. Initial Ontology-Based Extraction: The system leverages the foundational ontology
O = (V,R,C,I) to identify known entities, filters, and metrics from the user’s natural
language query. Using entity recognition and semantic parsing techniques, we extract
candidate terms that match vocabulary entries V and relations R defined in the ontology.

2. Unknown Entity Detection: When entities or metrics are encountered that do not
match any known vocabulary entries in the ontology, the system identifies these gaps and
marks them for user definition. This is crucial for maintaining high accuracy—rather



2.2

than making assumptions about undefined terms, the system proactively asks the user to
clarify.

Interactive User Definition Prompt: For each unidentified entity, filter, or metric,
the system presents a user-friendly definition interface on the UI. The user is prompted
to either:

e Select the entity from a suggested list based on semantic similarity
e Provide a definition by mapping to existing tables and columns

e Specify custom calculation logic for novel metrics

. Ontology Update: User-defined entities and metrics are incorporated into the ontology

for future queries, creating a continuously evolving semantic knowledge base.

Table and Query Linking via Heuristics: Once all entities, filters, and metrics are
identified or defined, the system uses two critical heuristic classes to establish connections:

e H; (Table Heuristics): Statistical aggregates that capture table selection patterns
based on entity-metric pairs, user preferences, and historical query success rates.
Formally, H; = P(T; | e,m,u), representing the conditional probability of selecting
table T; given entities e, metrics m, and user u.

e H, (Query Heuristics): Patterns extracted from successful and rejected queries
that capture which join logic, aggregation patterns, and filter combinations are most
reliable for specific entity-metric-filter combinations. This includes successful SQL
structures that match the extracted components.

Formal Extraction Process

Given a natural language query ¢, we formally define the extraction process as:

(eq, fq:mq) = Extracto(q) U UserDefur(gunknown) (1)

where:

eq represents extracted entities

fq represents extracted filters

mg represents extracted metrics

Extractp(q) denotes ontology-based extraction using vocabulary and relations
Gunknown denotes query components not found in the ontology

UserDefyr(qunknown) denotes user-provided definitions via UI prompts

After extraction, table and query linking is performed:

7::andidates = I'ankby,heuristics(7’7 Ht(eqa mg, u)) N feaSibihtY(Hq) (2)

where:

T is the set of all available tables

H, ranks tables based on statistical likelihood given extracted entities, metrics, and user
identity

H, filters candidates based on query feasibility heuristics (join availability, column pres-
ence, aggregation support)

candidates 1S the ranked set of candidate tables for query execution



2.3 Flow Diagram: Extraction and Linking Process
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Figure 1: Entity, filter, and metric extraction pipeline with ontology-based extraction, inter-
active Ul definition for unknown components, and heuristic-guided table ranking and query
feasibility assessment.



3 System Architecture

3.1 Flow Diagram and Generation Loop

The system architecture follows a cyclical generation-evaluation-refinement paradigm, as illus-
trated in Figure
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Figure 2: System flow diagram showing the generation-evaluation-refinement cycle with LLM
processing, query execution, heuristic capture (H;, Hy, H., H,), and user feedback loops.

The core workflow consists of:

1. Data Gathering Phase: Proprietary client data is indexed and prepared for retrieval

2. User Need Analysis: Natural language queries are parsed to extract intent, entities,
and constraints

3. Visualization Planning: The system determines appropriate response formats based
on query type and user preferences



4. Response Generation: A sequence of heuristic functions {Hp,, Hp,,...,HF,} are ap-
plied iteratively

5. Stopping Criterion: Generation terminates when confidence thresholds are met or max-
imum iterations are reached

6. Feedback Integration: User actions (acceptance/rejection/modification) are stored in
the heuristic store

3.2 Heuristic Store: The Memory Module

The heuristic store serves as a persistent memory module that accumulates operational intelli-
gence over time. It maintains the following components:

e Response Sequences: Historical query-response pairs indexed by similarity

e Table Frequency Statistics: Empirical distributions P(T; | u, q) of table usage per user
and query type

e Confidence Metrics: Probabilistic assessments of query correctness
¢ Rejection Patterns: Analysis of failed or rejected queries to identify systematic errors
¢ Visualization Preferences: User-specific rendering and formatting preferences

e Flow Heuristics: Temporal patterns in multi-turn conversations

4 Formal Definitions

We establish the following formal definitions that constitute the foundational components of
our system:

4.1 Core Terminology

Definition 1 (Evaluations): Let & = {ej,e,...,e,} be a set of quantitative metrics that
measure the operational efficacy of the system. Each evaluation e¢; : @ x R — R maps a
query-response pair to a real-valued performance indicator.

Definition 2 (Generative Data): Generative data G represents the corpus of system-
generated artifacts including rejected queries, partial executions, user corrections, and inter-
action traces. Formally, G = {(¢,7,u,t,a) | ¢ € Q,7 € R,u € U,t € T,a € A}, where Q
denotes queries, R denotes responses, i denotes users, T denotes timestamps, and A denotes
user actions (acceptance/rejection).

Definition 3 (Heuristics): Heuristics X = {Hi, Ha,...,H,,} are computed statistical
aggregates derived from generative data. Each heuristic H; : G — R? extracts d-dimensional
features such as table mention frequencies, entity co-occurrence patterns, and temporal query
distributions.

Definition 4 (Contexts): A context C' € C represents structured information provided to
the language model. Formally, C = (K, D, H, P), where K denotes knowledge, D denotes data
samples, H denotes relevant heuristics, and P denotes personalization parameters.

Definition 5 (Knowledge): Knowledge K comprises factual information about data
schemas, business operations, entity relationships, and metric computation rules. We repre-
sent knowledge as a directed acyclic graph K = (V, E) where V contains entity and relation
nodes, and F contains semantic edges annotated with constraints.

Definition 6 (Ontology): The ontology O = (V,R,C,Z) defines the structural rules and
semantic framework for knowledge representation, where V is the vocabulary, R is the set of



relations, C is the set of constraints, and Z is the interpretation function that maps domain
concepts to formal semantics.

Definition 7 (Crawling): Crawling ¢ : G x H — K is the algorithmic process of trans-
forming generative data into structured knowledge through heuristic-guided extraction, pattern
recognition, and ontological alignment.

5 Algorithmic Framework

5.1 Core Algorithms

The system implements four primary algorithmic categories:

5.1.1 Heuristic Extraction

Algorithm 1: Extracting All Heuristics

Input: Generative data G, Ontology O
Output: Heuristic set H

1: for each (q,r,u,t,a) € G do

2:  Extract entities &, from ¢ using O

3:  Extract tables 7, from r

4:  Update frequency distribution P(T" | u, &)

5. Compute confidence score o(r) < f(a,t, execution_success)
6: end for

7: Aggregate statistics into H = {Hy,..., Hpy}

8: return H

5.1.2 Context Construction

The system dynamically constructs context vectors by composing knowledge, data samples, and
heuristics tailored to each query.

Algorithm 2: Building Different Contexts from Heuristics

Input: Query ¢, User u, Heuristics ‘H, Knowledge base IC
Output: Context C

Retrieve relevant knowledge K, < retrieve(C, ¢, O)

Extract filters F' = {f, e, m} from ¢ using entity recognition
Compute personalization parameters P, <— profile(u, H)
Select top-k tables using table likelihood (Equation
Construct context C' «+ (K, samples(tables), H clevant, Pu)
return C'

5.1.3 Retrieval, Indexing, and Reranking

The context creation pipeline employs sophisticated retrieval mechanisms:

e Retrieval: Dense vector embeddings identify semantically similar historical queries



e Indexing: Multi-modal indices (keyword, semantic, temporal) enable efficient search

e Reranking: Heuristic-based reranking prioritizes contextually relevant information

5.2 Crawling: Knowledge Extraction Without Explicit Heuristics

The crawling mechanism operates in a bootstrapping mode, extracting knowledge from gener-
ative data with zero to minimal initial heuristics (denoted as H° — H?T9 where g represents
generations of refinement).

Algorithmic Guidelines for Crawling:

1. Zero False Negative Constraint: Extract heuristics with FNR = 0 to ensure no valid
patterns are discarded

2. Accuracy-Based Prioritization: Maintain most accurate heuristics Hyop, at the top of
the ranking for context construction

3. Hallucination Prevention: Prevent chaining of hallucinations across multiple conver-
sation turns through consistency checks

4. Content Pruning via Personalization: Apply user-specific filters to reduce context
size while maintaining relevance
5.2.1 The Crawling Process: From (Generative Data to Knowledge Graphs

The crawling pipeline transforms raw generative data into structured knowledge graphs through
a heuristic-guided LLM-based extraction process. Figure |3| illustrates this transformation
pipeline.

Source
Heuristics

Hsource

Input: @
enerated Knowledge
User interactions Dat (tablé freqlata g LLM C hg
SQL executions G T “| Context Gen. g
Rejections g K
(queries, responses, (entity-table maps,
user actions) query patterns)

Ontology
(@)

(entities,
relations)

Figure 3: Crawling pipeline transforming generated data G into knowledge graph X using LLM-
based extraction guided by heuristics Hyource and ontology O, with continuous feedback loop.

The Role of Heuristics in Crawling:

Heuristics serve critical functions: (1) source contextualization providing statistical signals
about successful patterns; (2) disambiguation guiding interpretation based on user history; (3)
quality filtering identifying high-confidence patterns; and (4) extraction prioritization determin-
ing which data warrants knowledge graph inclusion.

Why Heuristics Are Effective:

Since LLMs sample from probability distributions, heuristics influence generation by: (1)
biasing toward historically successful patterns; (2) reducing output variance; and (3) compen-
sating for limited observability—many LLMs (notably Claude) don’t expose log probabilities,

Output:
Structured
Knowledge



so heuristics provide external confidence signals. This creates a statistical framework that com-
plements the LLM’s generative capabilities.

6 Mathematical Formulation

6.1 Table Likelihood Computation

The probability of selecting tables for a given query is computed using a composite likelihood
function:

TL(C(f7 €, m)7 q, u) = H Pr(ﬂ | Ci,la Ci,?a o 7Ci,mf) (3)
i
where:
e C(f,e,m) represents context components: filters (f), entities (e), and metrics (m)

e ¢ is the natural language query

u is the user identifier

T; denotes candidate tables

C;,; are contextual features for table T;

my is the dimensionality of the feature space
This formulation integrates table-specific heuristics with query patterns and user preferences
to produce a ranked list of candidate tables.
6.2 Query-Context Mapping to Final Confidence
The final confidence of a generated query is computed through:
QC(TL,q',Hy) = FC (4)
where:
e T'L is the table likelihood from Equation
e ¢ is the generated SQL query

e H, is the global heuristic context including H7 (confidence codes) and Hg (execution
history)

FC is the final confidence score

The final confidence F'C is produced through a query generation module that employs a
Large Language Model (LLM) with the composed context:

FC = LLMqq(C, TL, Hy, Hs) — (SQL, 0) (5)

where LLMqg denotes the query generation module, and o is the confidence probability.

7 Evaluation Framework

7.1 Multi-Dimensional Evaluation Metrics

We employ a comprehensive evaluation framework that assesses system performance across
multiple dimensions:



7.1.1 (A) Security and Safety

Evaluate SQL injection vulnerabilities, data access violations, and malicious query patterns:
Esecurity = I[no_injection(q’)] - Ifauthorized_access(u, T')] (6)

7.1.2 (D) Accuracy of SQL Execution

Measure the percentage of generated queries that execute successfully:

Eovee = WLEC :S,e'cmes(q M 100% (7)

7.1.3 Extraction Accuracy

Assess the precision of entity extraction across filters (F), entities (E), and metrics (M):

Eextract = = (Precisiony + Precisiong + Precisionyy) (8)

W=

7.1.4 Table Selection Accuracy

Evaluate whether the correct tables are selected for query execution:

|Tse1ected N Tground,truth| ( 9)

gtable =
’Tground,truth |

7.1.5 Response Relevance

Measure semantic similarity between generated responses and expected outputs using embedding-
based metrics.

7.1.6 User Satisfaction

Collect explicit feedback from users and integrate with engineering workflows:

Esatistaction = Z Wy, * ratingu (10)
ueU

where w,, represents user-specific weights based on their interaction frequency and domain
expertise.

7.1.7 Personalization

Quantify the degree to which responses incorporate user-specific preferences:
Epersonalization = P(Fa E,M ‘ U) : ]I[query,uses(F, E, M)] (11)

7.1.8 SQL Confidence

Compute similarity with previously vetted SQL queries:

Econfidence =  Max sim(q’, qy) (12)
Gv € Qvetted

This serves as either a Bayesian prior assumption or a retrospective evaluation based on
historical data.

10



7.1.9 Factual Consistency

Verify that the generated response maintains factual consistency with the underlying data and
does not introduce hallucinations:

Econsistency = L[results(g’) C possible_results(D)] (13)

7.2 Business Metrics Alignment

The evaluation framework is explicitly designed to map to business value propositions:
(D) Query Volume Reduction:

_ # queries to data teams

BM
! # total users

(14)

A successful system reduces this ratio by empowering users to self-serve data requests.
(A) Weighted Satisfaction Score:

BMy =) wy - sy (15)
ueU

where w, weights users by their business impact and s, is their satisfaction rating.
High-Value Conversation Metrics:
We define high-value conversations by three criteria:

e Length: Conversations exceeding Tiength €xchanges
e Multiple Turns: Conversations with > 3 user-system exchanges

e Business Metrics Usage: Conversations that reference crucial business KPIs

BMs3 = |{c € C : length(c) > Tiengtn A turns(c) > 3 A uses_KPI(c)}| (16)

7.3 Per-User Granular Analysis

The system maintains per-user statistics for accuracy, coverage, and query patterns:

Metrics,, = {accuracy,,, coverage,,, query_frequency,,, preferred_tables,, } (17)

This enables:
1. Identification of jitter patterns (inconsistent entity extraction)
2. Tracking of entity retrieval failures

3. Personalized model fine-tuning

8 Results and Discussion

8.1 Experimental Observations

Preliminary deployment of the proposed framework demonstrates:

e Overall Accuracy: 96% accuracy in generating correct SQL queries for L1/L2 query
types

e Query Volume Reduction: 42% decrease in queries escalated to data teams
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Execution Success Rate: 96% of generated SQL queries execute without errors

User Satisfaction: Weighted average satisfaction score of 4.2/5.0

Table Selection Accuracy: 94% precision in selecting relevant tables

Multi-Turn Coherence: 91% consistency across conversation turns

8.2 Key Accuracy Drivers

Heuristics and personalization serve as the major anchors for achieving 96% ac-
curacy. The ablation studies (below) demonstrate that removing either heuristics or person-
alization significantly degrades system performance. Heuristics capture learned patterns from
successful query execution, while personalization adapts to user-specific query patterns and do-
main conventions. Together, these components enable the system to overcome the challenge
of ambiguous natural language input and achieve the high precision required for L1/L2 query
execution.

A critical challenge that persists is the wrong initial query problem: when users begin
with an ambiguous or imprecise query, the system may generate an incorrect SQL translation
that makes it extremely difficult for the end user to recover through iterative refinement. This
highlights the importance of interactive clarification mechanisms and proactive disambiguation
during the initial query interpretation phase.

8.3 Ablation Studies

Ablation studies reveal the contribution of each component:

Configuration Accuracy | User Satisfaction
Full System 96% 4.2/5.0
Without Heuristics 81% 3.5/5.0
Without Ontology 7% 3.3/5.0
Without Personalization 90% 3.8/5.0
Without Crawling 88% 3.9/5.0

These results validate the importance of each architectural component. The substantial
degradation without heuristics (15% drop in accuracy) and personalization (6% drop) confirms
their role as accuracy anchors, enabling the system to achieve 96% accuracy.

8.4 Challenges and Future Work

Key challenges include: (1) cold start for new users without historical data; (2) maintaining
ontology-schema synchronization; (3) scalability of heuristic computation; and (4) providing
transparent query reasoning explanations. Future work will explore reinforcement learning for
heuristic optimization, federated learning for cross-client knowledge transfer, active learning for
high-value query annotation, and causal reasoning to distinguish correlation from causation in
pattern extraction.

9 Conclusion

We have presented a comprehensive framework for natural language to SQL translation that
integrates heuristic stores, ontological knowledge representation, and multi-dimensional evalua-
tion. The system achieves continuous improvement through generative data feedback loops and
automated knowledge extraction. Mathematical formulations for table likelihood and query
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confidence provide principled foundations for probabilistic reasoning over database schemas.
Heuristics and personalization serve as key accuracy anchors, enabling the framework to achieve
96% accuracy for L1/L2 query types. By aligning evaluation metrics with business value propo-
sitions, the framework ensures that technical improvements translate directly into operational
benefits and establishes a robust foundation for intelligent, context-aware database query sys-
tems.
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